
Transfert de rayonnement Applications aux planètes du système solaire

Emmanuel Marcq

LATMOS. Université de Versailles St-Quentin-en-Yvelines

M2 Planétologie et Exploration Spatiale - 2024-2025

Introduction

- Spectres IR proches dominés par CO₂.
- Absorptions par H₂O et CO.

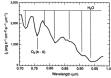
Vénus

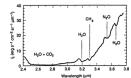
- Pénétration limitée au sommet des nuages de H₂SO₄ $\tau \sim 20 - 30$, z: 48 - 64 km, T: 240 - 450 K
- Spectre UV dominé par SO₂ en dessous de 320 nm et un absorbant inconnu $(300 - 450 \, \text{nm})$

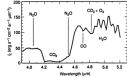
Mars

- Surface observable, teinte rouge (oxydes de fer).
- Diffusion Rayleigh limitée (sauf pour $\mu \to 0$), aérosols dominants.

Terre


- H₂O et CO₂ dominent l'IR proche et le visible (nuages).
- O₂ et O₃ dominent dans l'UV.
- Surface observable à $\sim 50\%$: H₂O liquide et solide, chlorophylle, silicates
- Diffusion Rayleigh dans l'atmosphère

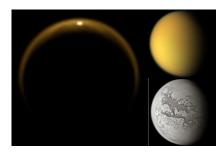



Vénus en UV

Mars en visible

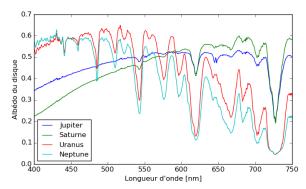
Corps telluriques




Spectres de la Terre observés par NIMS/Galileo

Titan

- Spectre dominé par CH $_4$ et brouillard photochimique ($\lambda < 0.5 \, \mu \text{m}$)
- Pénétration du rayonnement solaire limitée par la diffusion dans le brouillard
- ullet Au-delà de $0.8\,\mu\mathrm{m}$, fenêtres atmosphériques entre les bandes de CH $_4$
- Zones claires et sombres (glace d'eau vs. composés organiques)
- Présence de lacs (rélexions spéculaires)



- Au sommet des nuages de NH₃ pour Jupiter $(p:0.2-0.45\,\mathrm{bar})$ et Saturne (p:0.15-0.35 bar).
- Au sommet d'un nuage optiquement épais (H₂S?) vers 3 bar sur Uranus et Neptune
 - Mais présence de nuages de CH₄ vers 1,5 bar pouvant limiter aussi.

CH₄ domine le spectre IR proche – visible

- NH₃ gazeux détecté sur Jupiter et Saturne
- CH₄ très abondant sur Uranus et Neptune \Rightarrow teinte bleutée
- Chromophores absorbant le bleu sur Jupiter et Saturne ⇒ teinte jaune-orangée.

Émission propre : aurores

- Mécanisme similaire au mécanisme terrestre : particules du vent solaires piégées par \vec{B} et ionisant la haute atmosphère
- Désexcitations en visible et UV.

Origine

- À haute densité :
 - Élargissement par collisions des raies très important.
 - De nouvelles transitions deviennent possibles (dimères).
- Conséquence :
 - Les ailes lointaines des raies se confondent les unes avec les autres.

Émission thermique IR

Caractéristiques

- Dépendance quadratique avec la pression
- Décroît avec la température.
- Décroît avec la fréquence / croît avec la longueur d'onde.
- Dépendance spectrale très régulière, variations continues.

Pertinence

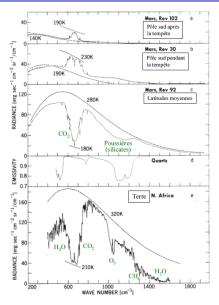
- Atmosphères très denses en IR thermique et fréquences inférieures.
 - Vénus (CO₂-CO₂)
 - Titan (N₂-CH₄-H₂)
 - géantes (H₂-He, H₂-H₂, ...)

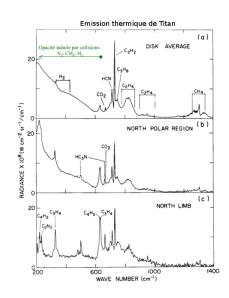
Sources d'opacité

Vénus, Terre, Mars

- N_2,O_2 Pas de transitions dipolaires permises. Transitions interdites faibles. Vibration de N_2 à $4,29\,\mu m$.
 - H₂O Bandes de vibration-rotation vers 6,3 et 2,7 μm. Très important sur Terre.
 - CO₂ Bandes de vibration-rotation (15; 4,3; 2,7 μ m). Très important.
- ${\rm O_3,\ CH_4\ \ Vers\ 9,6\ \mu m\ (O_3)}$ et $7,67\ \mu m\ ({\rm CH_4})$. Très important sur Terre.
- Aérosols H_2O (Terre), H_2SO_4 (Vénus), H_2O et poussières (Mars). Très important.

Titan

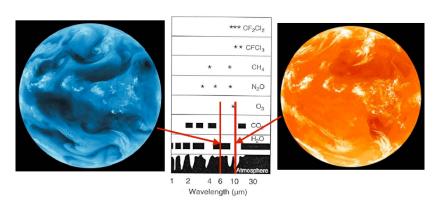

```
N_2-CH_4-H_2 Par collisions (troposphère)


H_xC_y, Nitriles Important dans la stratosphère

Aérosols Nuages de CH_4 (troposphère), brouillard

photochimique (stratosphère).
```

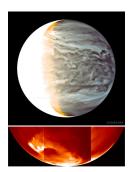
Corps telluriques

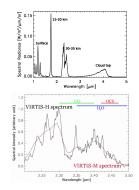


Émission thermique IR 0000000

Terre

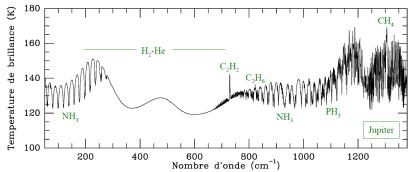
Fenêtres de transparence par exemple 10.5 à 12.5 µm Fenêtres d'opacité par exemple H_2O de 5.7 à 7.1 μm

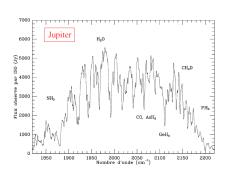

Vénus


Fenêtres IR

- H₂SO₄ peu absorbant à $\lambda < 2.5 \, \mu m$
- Émission thermique de l'atmosphère profonde (et chaude) détectable côté nuit
- Mesures de composition (CO, OCS, H2O, HDO, SO₂, HF, HCI)

Autres

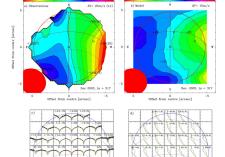

 Fluorescences (recombinaison de O2 et NO).


NH₃, PH₃ NH₃ pour Jupiter, PH₃ pour Saturne, raies rotationnelles et bandes de vibration-rotation.

 C_xH_y Bandes de vibration-rotation dans la stratosphère (CH₄ à 7,67 µm, C_2H_6 à 12,2 µm, C_2H_2 à 13,7 µm).

Fenêtres (Jupiter & Saturne)

- ullet Sondent vers 4 à 7 bar
- Détection de H₂O, CO, NH₃, PH₃, CH₃D, GeH₄, AsH₃ (0,2 ppb!)

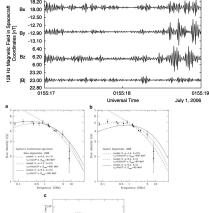


Processus

- Objets « froids » (quelques dizaines de K)
- Raies rotationnelles de CO (Vénus, Mars)
 - Inversion de T(z)
 - Cartes Doppler : vitesse des vents

Mesures

- Instruments hybrides entre radiotélescopes et télescopes optiques (ou IR).
- Atmosphère terrestre presque opaque : nécessité d'observatoires en altitude ou spatiaux.

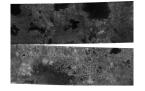


Raie rotationnelle de CO (0-1) observée sur Mars et carte Doppler

- Principalement non thermiques
 - Rayonnement synchrotron (e⁻ dans \vec{B}).
 - Rayonnement free-free (freinage e⁻ dans plasma)
 - Signature d'orages (Vénus, Terre, Jupiter), de phénomènes magnétosphériques et/ou ionosphériques.

Mesures

- Au sol : radio-télescopes.
- Utilisé de façon active : radar, réfraction.


Principe

- Analyse d'ondes réfléchies par l'objet et émises par l'observateur (sondage actif)
 - Distribution angulaire et en longueur d'onde
 - Temps de retour : altimétrie
- Domaine radio : radar
- Domaine visible/NIR/UV avec laser: lidar

Utilisation en planétologie

- Examen de la rugosité des surfaces solides ou liquides.
- Altimétrie, stratigraphie

Titan (Cassini)

Vénus (Magellan)