Sky Objects 0000	Celestial coordinates	Brightness 00	Atmospheric effects	Instruments 000	Preparing 00000	

Preparation of astronomical observations

Emmanuel Marcq

LATMOS, Université de Versailles St-Quentin-en-Yvelines

SIMO, 23-26 Oct. 2024

Image: A math a math

E. Marcq

The observable Universe

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

OHP Observations

ATMOS/UVSQ

- Galaxies
 - can be observed in almost all parts of the sky;
 - except where the Milky Way obstructs the view.
 - Usually very low surface brightness;
 - Need for a dark sky and no moon.

Sky Objects ○●○○	Celestial coordinates	Brightness 00	Atmospheric effects	Instruments 000	Preparing 00000	

- Large clouds of gas and dust within our Galaxy;
- Low contrast and surface brightness;
- Easiest ones to observe are found in *Messier*'s catalog.

Sky Objects ○○●○	Celestial coordinates	Brightness 00	Atmospheric effects	Instruments 000	Preparing 00000	

- Appear as point-like objects;
- Very good contrast, good brightness;
- Good targets for spectroscopy.

- Move against the background stars: trickier to find;
- Large diversity of objects;
 - Moon;
 - Planets;
 - Asteroids;
 - Comets.

 Celestial objects (out of our own solar system) are so far away that their **direction** with respect to the center of Earth always stays the same.

Celestial coordinates

- These directions can be recorded on the celestial sphere.
- Distance information lost \Rightarrow only two coordinates needed.
- An observer on the ground can only see **half** of the celestial sphere at any given time.

OHP Observations

E. Marco

Introduction Sky Objects Celestial coordinates Brightn

ness Atmospheric eff 000 cts Instruments

aring Ga

Horizonal system

• Most naive system possible

Azimuth 0° to 360° . Heading to the object

$$0^{\circ} =$$
 North; $90^{\circ} =$ East; etc.

- Altitude 0° (horizon) to 90° (zenith). Negative values located below the horizon.
- Not very useful in astronomy due to apparent motion of the sky, except for observational limitations in altitude.

Equatorial coordinates

- Right ascension (RA)
 - From 0 to 24^h , 1^h subdivided into 60^m and 3600^s
 - Analogous to longitude

Celestial coordinates

- Arbitrary reference (vernal point γ)
- Declination (Dec)
 - From -90° to $+90^{\circ}$, 1° subdivided into 60' and 3600''.
 - Analogous to latitude.

• Caution! $15^{\circ} \equiv 1^h \Rightarrow 15' \equiv 1^m; 15'' \equiv 1^s$

E. Marcq

- The Earth rotates in 23 h 56 min 4 s with respect to the celestial sphere (sidereal day).
- Results in the **apparent motion** of the celestial grid around the north celestial pole.

• • • • • • • • • • • •

- Fixed with respect to the observer.
- Set to 0^h along the meridian direction (where celestial objects culminate)
- (HA,Dec) is the preferred coordinate system for equatorial mounted telescopes.

- RA and HA gradually drift apart as Earth rotates inside the celestial sphere.
 - This drift is measured by the Sidereal Time (actually, an angle) : HA = ST RA
 - ST drifts with time and varies with longitude

Celestial coordinates

• 24^h per sidereal day (= 23 h 56 min 4 s).

Image: A math a math

E. Marcq

OHP Observations

Sidereal Time (ST)

 and F₀ a reference (originally Vega's) flux in the same waveband.

Point-like sources Lower magnitude \Rightarrow better contrast.

• Relevant quantity: magnitude per solid angle

• Black sky brightness (OHP): $20.7 \text{ mag}/''^2$

Brightness

- ${1''}^2 \simeq 2.35 \cdot 10^{-11} \, {\rm sr}$
- Pay attention to the angular size of the object compared to the field of view (FoV).
 - 0.8 m telescope (OHP): 15'
 - Andromeda galaxy (M31) spans a few degrees, so larger than FoV.

	Sky Objects 0000	Celestial coordinates	Brightness 00	Atmospheric effects ●○○	Instruments 000	Preparing 00000	
Seeing							

- Origin Atmospheric turbulence distorts light rays incoming from outer space, resulting in a blur.
- Typical extent: 1 to 2"
- Limits the spatial resolution of the instrument.

Good seeing \longrightarrow Bad seeing

< □ > < 同 > < 回 > < Ξ > < Ξ

	Sky Objects 0000	Celestial coordinates	Brightness 00	Atmospheric effects ○●○	Instruments 000	Preparing 00000	
Airmass							

- Definition Slant optical depth τ of an incoming ray wrt. minimal optical depth at zenith τ_0 : $X = \tau/\tau_0 \ge 1$
- Far from the horizon (plane-parallel assumption), we have $X\simeq 1/\cos z$
- Smaller airmass \Rightarrow less absorption, better seeing.

Image: A math a math

OHP Observations

E. Marco

- Nightglow from excited O₂ molecules;
- Also light pollution from artificial lighting;
- Mainly in the near IR, also in the visible (green).

- Manual tracking
 - but motor to compensate sidereal time
- Visual observations
 - Several eyepieces available
- Imaging observations
 - CCD camera and data reduction software installed
- Spectroscopic observations
 - At OHP, only with the 1.93 m, 1.52 m and 1.20 m telescopes.

• • • • • • • • • • • •

• Availability

- For planetary science and astronomy SIMO students.
- Operating under the supervision of an expert operator!
- Observations
 - Imaging observations (with RGB filters)
 - Visible range **spectroscopy** $(400 700 \text{ nm}, R \sim 1000)$

イロト イヨト イヨト イ

- Necessary for imaging mode
- Broadband and narrowband filters (e.g. $H\alpha$) available

Spectral transmissions for the older filter set on the 0.8 m telescope

E. Marcq	
OHP Observations	

Night's conditions

- Getting sunset and sunrise times
- Meeting the person in charge of the telescope
- Gather technical info: blind zones, FOV, filters or gratings, camera specs
- Checking sidereal time
- Moon phase and location, rising and setting times
- Weather

Ochoice of objects

- Checking ephemerides on the Internet
- Checking visibility of object: brightness, location

< □ > < 同 > < 回 > < Ξ > < Ξ

• Back-up objects in order of priority

E. Marco

Ephemerides

Online

Offline

Celestia https://celestiaproject.space/ Stellarium http://www.stellarium.org

< □ > < 同 > < 回 > < Ξ > < Ξ

Image Processing

< □ > < 同 > < 回 > < Ξ > < Ξ

Includes at least the following columns

- Time (local, universal, sidereal);
- Name of object to observe at that time;
- Type of object;
- Coordinates in equatorial system (RA, Dec) (1' accuracy);

- Coordinates in local system (HA, Dec) (1' accuracy);
- Altitude above horizon;
- Chosen filter or grating;
- Magnitude in the relevant waveband.

	Sky Objects 0000	Celestial coordinates	Brightness 00	Atmospheric effects	Instruments 000	Preparing ○○○○●	
During the observation							

- T80 absolute pointing imprecise to a few arcmins;
- \Rightarrow Necessity of taking a short exposure frame to check the pointing
 - If the object is too faint to be seen in a short exposure frame, a finding chart is necessary
 - Schematic diagram of the neighboring bright sky objects obtained by e.g. SIMBAD

LATMOS/UVSQ

- Other technical observations
 - Focusing observations (also yield seeing estimates)
 - Calibration: flat fields, dark fields and offsets.

troduction Sky Obje

Celestial coordinates

Brightness

Atmospheric effects

ts Instru

Preparing

Gallery

Previous SIMO editions - M2 Planetary Science Students

E. Marcq OHP Observations ATMOS/UVSQ