Transfert de rayonnement III Transfert radiatif avec diffusion

Emmanuel Marcq

LATMOS, Université de Versailles St-Quentin-en-Yvelines

M2 Planétologie et Exploration Spatiale - 2024-2025

Nature physique de la diffusion

- L'interaction entre la matière et une onde électromagnétique incidente peut en détourner une partie vers une autre direction.
- Diffusion à la même fréquence que le champ incident : diffusion cohérente
- Introduit une extinction supplémentaire, en plus de l'absorption (où l'énergie électromagnétique incidente est convertie en d'autres formes d'énergie).

Extinction

- Extinction = Absorption + Diffusion
- On note le coefficient linéique d'absorption $k_{\rm abs}=d\tau_{\rm abs}/ds$, le coefficient linéique de diffusion $k_{\rm sca}=d\tau_{\rm sca}/ds$ et celui d'extinction $k_{\rm ext}=d\tau/ds$

Définition de ϖ (aussi noté ϖ_0)

$$\varpi = \frac{k_{\rm sca}}{k_{\rm ext}} = \frac{k_{\rm ext} - k_{\rm abs}}{k_{\rm ext}} = \frac{k_{\rm sca}}{k_{\rm sca} + k_{\rm ab}}$$

- $0 < \varpi < 1$ (sans unité)
 - $\varpi=0~$ Extinction entièrement due à l'absorption Pas de diffusion.
 - $\varpi=1~$ Extinction entièrement due à la diffusion Pas d'absorption
- ϖ est une fonction de la longueur d'onde/de la fréquence/du nombre d'onde : ϖ_{λ} ou ϖ_{ν} ou ϖ_{σ} .

Signification

- Décrit la répartition angulaire (θ',φ') des rayons diffusés par rapport à la direction du rayon incident (θ,φ).
- C'est une distribution de probabilité $P(\theta, \varphi; \theta', \varphi')$:

$$dP\left[(\theta,\varphi) \to (\theta',\varphi')\right] = P(\theta,\varphi;\theta',\varphi') \, d\Omega'$$

• Unité de P : sr⁻¹

Caractéristiques

Normation

$$\iint_{\varphi',\varphi'} P(\theta,\varphi;\theta',\varphi') \, d\Omega' = \int_{\varphi'=0}^{2\pi} \int_{\mu'=-1}^{1} P(\mu,\varphi;\mu',\varphi') \, d\mu' \, d\varphi' = 1$$

- En général, P ne dépend que (du cosinus) de l'angle Θ entre le rayon incident et le rayon diffusé : $P(\theta,\varphi;\theta',\varphi') = p(\cos \Theta)$.
 - En convention usuelle plan-parallèle, on a : $\cos \Theta = \mu \mu' + \sqrt{(1 - \mu^2)(1 - \mu'^2)} \cos (\varphi'_1 - \varphi).$
 - Exemple : diffusion isotrope, $p(\cos \Theta) = \frac{1}{4\pi} \operatorname{sr}^{-1}$.

Autre convention (P sans unité)

 $dP=Pd\Omega\times 4\pi {\rm sr.}$ En ce cas, $\iint Pd\Omega'=4\pi\,{\rm sr}$ et p=1 pour la diffusion isotrope.

Nouvelle forme du terme source S_{ν}

- Loi de Kirchhoff émissivité $(1-\varpi) < 1$ pour la source thermique
- Contribution diffusive tout rayon (μ',φ') peut être en partie diffusé dans la direction du rayon étudié.

$$I_{\nu}(0;\mu,\varphi) = I_{\nu}(\tau_{\nu}^{*};\mu,\varphi)e^{-\tau_{\nu}^{*}/\mu} + \int_{\tau_{\nu}'=0}^{\tau_{\nu}^{*}} S_{\nu}(\tau_{\nu}';\mu,\varphi)e^{-\frac{\tau_{\nu}'}{\mu}} \frac{d\tau_{\nu}'}{\mu}$$

avec

$$S_{\nu}(\tau_{\nu};\mu,\varphi) = (1-\varpi) B_{\nu} [T(\tau_{\nu})] + \varpi \int_{0}^{2\pi} \int_{-1}^{1} I_{\nu}(\tau_{\nu};\mu',\varphi') P(\mu',\varphi';\mu,\varphi) \, d\mu' \, d\varphi'$$

Problème

- Les différents rayons se mélangent les uns aux autres.
- Résolution simultanée pour toutes les directions : Pas de solution explicite en général !
 - Mais émission thermique très souvent négligeable aux courtes longueurs d'onde (où la diffusion devient importante).

E. Marcq	LATMOS/UVSQ
JE 1 – Cours 3	

Lorsque les particules diffusives sont de taille très inférieure à λ .

$$P(\Theta) = \frac{3}{16\pi} \left(1 + \cos^2 \Theta \right)$$
$$\sigma_{\lambda} = \frac{128\pi^5 \alpha^2}{3\lambda^4}$$

- α : polarisabilité des particules diffusives.
 - Dépendance en λ^{-4} : les courtes longueurs d'onde sont davantage affectées.
 - Diffusion polarisante, non isotrope.
 - Exemple typique : bleu du ciel.

				\mathbf{x}					1	۲	1	÷.						
			\mathbf{x}								1			×		÷		
	•	۰.					. 1			1	x							
	5	5		٩,	٩.	\mathbf{x}	3			è.	x	e		,	1			
~	•	•	\sim	\mathbf{x}_{i}	ς.	٩.	5	1	1	1	×	1		×			÷	
	۰.	\sim		$\tilde{\mathbf{v}}_{i}$	\mathbf{x}_{i}	\sim	N	1	1	1	z	1	×					
							÷.	1.	- t -	1	1	4	5					
-	-		-						- 14									
2	2	2	2	-	2		÷	ς.	1	-	-	-	-		-	-	-	
Ĵ	-	Ĵ	-	÷	-	÷	į	ž	7	1	1	1.7		•	~	-	;	
	-	-	-						7	111	1 2 2	1.1.1	1 1 1			• • •	:	
	-								7 51 -	1111	1111	1 2 2 2	1 2 2 2					
								1 1 1 1 1 1	7	1 / / / /	11///	11111	11111	1 1 1 1 1				
									7	1/////	11////	111111	111111	111111				
									7	1//////	11/////	11111111	11111111	11111111				
									7	1100000			111111111					
									7	- /								
			· · · ·															

Section efficace σ_{λ}

- He (minimal) $5,8\,10^{-30}\,{
 m cm}^2/\lambda^4\,[{
 m \mu m}]$
- CO₂ (maximal) $8,810^{-28} \, \text{cm}^2/\lambda^4 \, [\mu\text{m}]$
- Négligeable pour $\lambda > 1 \,\mu m$ et $P < 10 \,bar$

Polarisation

 Degré de polarisation linéaire δ en simple diffusion :

$$\delta = \frac{\sin^2 \Theta}{1 + \cos^2 \Theta}$$

• Maximal à angle droit de la direction de la source

Degré de polarisation linéaire Rayleigh [%] avec source sur l'horizon

Domaine d'application

- particules sphériques de rayon r quelconque par rapport à λ et d'indice de réfraction (complexe) connu.
- s'applique très mal aux particules non sphériques !

Exemples Aérosols : poussières, nuages

- $r \ll \lambda$ Tend vers la diffusion Rayleigh
- $r\gg\lambda \ \ {\rm Tend} \ \, {\rm vers} \ \, {\rm l'optique} \\ {\rm g\acute{e}om\acute{e}trique} \\$

Fonction de phase

- **Complexe** avec pic marqué vers l'avant et interférences multiples.
- Ne dépend que de Θ

UE 1 – Cours 3

E. Marcq UE 1 – Cours 3

Définition

 $\delta(x)$ est une distribution telle que : $\forall f(x)$ intégrable sur \mathbb{R} ,

$$\int_{-\infty}^{+\infty} f(x)\delta(x)\,dx = f(0)$$

Techniques de résolution

Interprétation

- δ(x) peut être vue comme une
 « fonction-limite » :
 - Nulle pour $x \neq 0$
 - Infinie en x = 0
 - Telle que $\int_{\mathbb{R}} \delta(x) \, dx = 1$
- Utile pour décrire des phénomènes concentrés autour de l'origine.
- Attention : δ(x) a la dimension inverse de celle de x !

Lumière incidente collimatée

- Direction d'incidence $\mu=-\mu_0<0$ pour la lumière solaire et d'azimut φ_0
- En $\tau = 0$, on a donc $I(0; \mu, \varphi) = F_0 \delta(\mu + \mu_0) \delta(\varphi \varphi_0)$.

Équation pour le faisceau direct

$$I_{\text{direct}} = F_0 \delta \left(\mu + \mu_0 \right) \delta \left(\varphi - \varphi_0 \right) e^{-\tau/\mu_0}$$

Équation pour les faisceaux diffusés

$$\begin{split} \mu \frac{dI_{\text{dif}}}{d\tau} = & I_{\text{dif}} - (1 - \varpi_0) B_\nu - \varpi_0 \iint I_{\text{dif}}(\mu', \varphi') p(\mu', \varphi'; \mu, \varphi) \, d\mu' \, d\varphi' \\ & - \varpi_0 F_0 p(-\mu_0, \varphi_0; \mu, \varphi) e^{-\tau/\mu_0} \end{split}$$

En isotrope ($p = \frac{1}{4\pi}$) :

$$\mu \frac{dI_{\rm dif}(\mu)}{d\tau} = I_{\rm dif}(\mu) - (1 - \varpi_0) B_{\nu} - \frac{\varpi_0}{2} \int_{-1}^{1} I_{\rm dif}(\mu') \, d\mu' - \frac{\varpi_0 F_0}{4\pi} e^{-\tau/\mu_0}$$

Processus diffusifs 0000

Diffusion non isotrope

• P est caractérisée par son paramètre d'asymétrie g défini par :

$$g = \langle \cos \Theta \rangle = 2\pi \int_{-1}^{1} \mu P(\mu) \, d\mu$$

- $\bullet \ g$ est le premier moment de P
 - g = -1 diffusion exclusivement vers l'arrière.
 - $g = 0 \iff$ diffusion isotrope (mais \Rightarrow ! cf. diffusion Rayleigh)
 - g=1 diffusion exclusivement vers l'avant (donc pas de diffusion !)

Résolution

- On considère qu'une fraction (1-g) du rayonnement est diffusée de façon isotrope et une fraction g non diffusée.
- On peut alors remplacer au et ϖ_0 par des équivalents isotropes au' et ϖ'_0 .

•
$$\tau' = \tau (1 - g \varpi_0)$$
 et $\varpi'_0 = \frac{(1 - g) \varpi_0}{1 - g \varpi_0}$.

Résolution approchée du cas isotrope

• En l'absence de source thermique, on a : $u\frac{dI}{dI} = I = \frac{\varpi_0}{2} \int_{-1}^{1} I(u) du = \frac{\varpi_0 F_0}{2} e^{-\tau/\mu_0}$

$$\mu \frac{d\tau}{d\tau} = I - \frac{1}{2} \int_{-1}^{1} I(\mu) \, d\mu - \frac{1}{4\pi} e^{-i\mu t} d\mu$$

Quadrature de Gauss

Pour toute fonction f suffisamment lisse sur $\left[-1;1\right]$, on a :

$$\int_{-1}^{1} f(\mu) \, d\mu \approx \sum_{j=-N}^{N} a_j f(\mu_j)$$

où les a_j et μ_j optimaux ne dépendent que de j et N. L'approximation est d'autant meilleure que N est grand.

N	μ_j	a_j
1	$\mu_{\pm 1} = \pm 1/\sqrt{3}$	$a_{\pm 1} = 1$
2	$\mu_{\pm 1} \approx \pm 0.34$	$a_{\pm 1} \approx 0.652$
	$\mu_{\pm 2} \approx \pm 0.86$	$a_{\pm 2} \approx 0.348$
3	$\mu_{\pm 1} \approx \pm 0.239$	$a_{\pm 1} \approx 0.468$
	$\mu_{\pm 2} \approx \pm 0.661$	$a_{\pm 2} \approx 0.361$
	$\mu_{\pm 3} \approx \pm 0.932$	$a_{\pm 3} \approx 0.171$

Processus diffusifs 0000

Approximation à deux faisceaux (N = 1)

$$\frac{1}{\sqrt{3}}\frac{dI^{+}}{d\tau} = I^{+} - \frac{\varpi_{0}}{2}\left(I^{+} + I^{-}\right) - \frac{\varpi_{0}F_{0}}{4\pi}e^{-\tau/\mu_{0}}$$
$$-\frac{1}{\sqrt{3}}\frac{dI^{-}}{d\tau} = I^{-} - \frac{\varpi_{0}}{2}\left(I^{+} + I^{-}\right) - \frac{\varpi_{0}F_{0}}{4\pi}e^{-\tau/\mu_{0}}$$

Approximation à deux faisceaux dans le cas non-isotrope

• On montre que :

$$\begin{cases} \frac{1}{\sqrt{3}} \frac{dI^{+}}{d\tau} = I^{+} - \varpi_{0} \frac{1+g}{2} I^{+} - \varpi_{0} \frac{1-g}{2} I^{-} - \frac{\varpi_{0} F_{0}}{4\pi} \left(1 - \sqrt{3}g\right) e^{-\tau/\mu_{0}} \\ -\frac{1}{\sqrt{3}} \frac{dI^{-}}{d\tau} = I^{-} - \varpi_{0} \frac{1+g}{2} I^{-} - \varpi_{0} \frac{1-g}{2} I^{+} - \frac{\varpi_{0} F_{0}}{4\pi} \left(1 + \sqrt{3}g\right) e^{-\tau/\mu_{0}} \end{cases}$$

Atmosphère semi-infinie

Hypothèses

- Pas de rayonnement direct
 - Moyenne spatiale ou temporelle du flux solaire

•
$$I^{-}(\tau = 0) = I_{0}; I^{+}(\tau \to +\infty) = 0$$

 $\bullet\,$ On cherche des solutions en $e^{k\tau}.$ Il faut donc trouver k. Résolution

• Sans flux direct, système linéaire homogène en I^+ et I^- : $\mathbf{M} \cdot {I^+ \choose I^-} = {0 \choose 0} \text{ avec } \mathbf{M} = \begin{pmatrix} \frac{k}{\sqrt{3}} + \frac{\varpi_0}{2} - 1 & \frac{\varpi_0}{2} \\ \frac{\varpi_0}{2} & -\frac{k}{\sqrt{3}} + \frac{\varpi_0}{2} - 1 \end{pmatrix}$

• Solutions non triviales (i.e. non nulles) si et seulement si : $\det \mathbf{M} = 0 \Leftrightarrow k^2 = 3(1 - \varpi_0)$

• D'où
$$I^- = I_0 e^{-\sqrt{3(1-\varpi_0)}\tau}$$
 et $I^+ = \Lambda I_0 e^{-\sqrt{3(1-\varpi_0)}\tau}$

Albédo Λ

- En injectant I^+ et I^- dans l'équation différentielle en $dI^-/d\tau$, on obtient : $\sqrt{1-\varpi_0}=(1-\varpi_0/2)-\Lambda\varpi_0/2$
- Après manipulations algébriques, on obtient : $\Lambda = \frac{1 \sqrt{1 \varpi_0}}{1 + \sqrt{1 \varpi_0}}$
- Λ est l'albédo d'une atmosphère/d'un nuage semi-infini éclairé de façon diffuse.

E. Marcq UE 1 – Cours 3

Sondages atmosphériques

Pénétration du rayonnement réfléchi

- $I^+(\tau)/I^+(0) = e^{-\sqrt{3(1-\varpi)}\tau}$: le rayonnement sortant a pénétré en moyenne jusque $\langle \tau \rangle = \frac{\int_0^\infty \tau e^{-k\tau} d\tau}{\int_0^\infty e^{-k\tau} d\tau} = \frac{1}{k} = \frac{1}{\sqrt{3(1-\varpi)}}$ • Alors, $\langle \tau_{dif} \rangle = \varpi \langle \tau \rangle = \frac{\varpi}{\sqrt{3(1-\varpi)}}$ et $\langle \tau_{abs} \rangle = (1-\varpi) \langle \tau \rangle = \sqrt{\frac{1-\varpi}{3}}$

Sondages possibles

Profil d'absorption connu Mesure des propriétés de diffusion (ϖ , densité de diffuseurs, ...) Profil de diffusion connu Mesure du profil vertical d'absorption.

Atmosphère inhomogène

• On résout le problème par **découpage en couches** homogènes en calculant coefficients de réflexion R_i et de transmission T_i

• Pour le cas semi-infini, T=0 et $R=\Lambda$

• On combine ensuite les couches deux par deux et on itère (*adding method*) :

$$R_{1+2} = R_1 + \frac{T_1^2 R_2}{1 - R_1 R_2} \ ; \ T_{1+2} = \frac{T_1 T_2}{1 - R_1 R_2}$$

Nuage/surface réfléchissante + atmosphère non diffusante ($\tau_{\rm dif}=\varpi\tau\ll1)$

- On a alors : $I_{\nu}(0) = R(\mu, \varphi; \mu_0, \varphi_0) I_0 e^{-\tau_{\nu} \left(\frac{1}{\mu_0} + \frac{1}{\mu}\right)}$
- Mesure de : $\tau_{\nu} = \int_0^{\infty} \sigma_{\nu} n(z) \, dz = \sum_i \sigma_{\nu}^i \int_0^{\infty} n_i(z) \, dz = \sum_i \sigma_{\nu}^i a_i$
- Accès à la densité de colonne $a_i = \int_0^\infty n_i(z) \, dz$ de l'absorbant i.

Techniques de résolution

